

Offshore Wind Technology and Modeling Needs

Walt Musial |Offshore Wind Research Platform Lead | National Renewable Energy Laboratory CPUC Emerging Technology Workshop

September 20, 2023

NREL Offshore Wind Modeling Overview

- Cost Modeling Tools
- Metocean Modeling Wind and Waves
- Single Turbine Performance and Loads Modeling
- Full Wind-Plant Performance and Loads
- Mooring Systems
- Grid Systems Integration and Reliability

NREL/DOE Open-Source Wind Cost Models

SAM

Fidelity

Turbine Components

Onshore Plants

Simple spreadsheet-style balance of station

(CapEx) and operations and maintenance (OpEx)

Offshore Plants

SAM

Simple spreadsheet-style balance of station (CapEx) and operations and maintenance (OpEx)

ORBIT, WOMBAT

Regression – **Market Based**

Empirical rules of thumb based on rating, rotor diameter, hub height, etc.

Bottom-up

Detailed estimation of costs from materials. labor, consumables, tooling, financing, etc.

WISDEM (NREL-CSM), SAM

Simple spreadsheet-style turbine mass and costs

WISDEM (major components) Detailed manufacturing process models

LandBOSSE, WOMBAT

Process-based accounting of balance of station (CapEx) and operations and maintenance (OpEx)

Process-based accounting of balance of station (CapEx) and operations and maintenance (OpEx)

Bottom-up Cost Modeling Approach

Cost Modeling Needs

temporal scale for cost

industrialization/standard

Higher resolution on

Tradeoffs between

ization and turbine

More granularity on

future costs of subcomponents

components and

Floating wind

validation

reductions

upscaling

•

Weather Research and Forecasting Model for Wind Resource, Forecasting and Extreme Event Predictions

WRF setup was chosen for California CA20 dataset based on validation with best observations available in 2020:

- 1) CA ocean surface buoys (4-m above the water)
- 2) Four coastal radars
- 3) Three floating lidars in the Mid-Atlantic
- CA20 data show a large positive bias using the MYNN Planetary Boundary Layer (PBL) set-up compared to the lidar observations at all considered heights (+0.6 m s⁻¹ at Morro Bay, +1.9 m s⁻¹ at Humboldt). Windspeeds were over predicted!
- MYNN set-up is valid in most other regions, why not CA?
- More research is needed to understand the physics causing the California wind bias in WRF because we need to be able to trust the models offshore.

NREL/DOE Performance and Loads Modeling Tool

	Model Fidelity / Computational Intensity		
Application	Design Exploration	Detailed Design	Highly Resolving
Single Turbine Performance and Loads Full Wind-Plant Performance and Loads	WISDEM, RAFT Multidisciplinary design optimization and cost modeling	OpenFAST Turbine loads analysis, detailed turbine design, IEC standards	ExaWind/SOWFA Understand physics, final turbine design check, calibrate / validate lower fidelity
	Other Tools: Turbine Architect, CpMax, HawtOpt2	Other Tools: Bladed, HAWC2, FLEX 5	Other Tools: EllipSys3D-HAWC2, STAR-CCM+
	FLORIS Wind-plant controls and siting optimization	FAST.Farm, WindSE Turbine siting within plant, wind-plant controls, plant loads analysis, detailed plant design	ExaWind/ERF/SOWFA Understand physics, final plant design check, calibrate / validate lower fidelity
	Other Tools: WAsP, WindFarmer, Fuga	Other Tools: openWind, MeteoDyn WT, DWM	Other Tools: EllipSys3D, PALM, WRF-LES, W2A2KE3D, VFS-Wind

* Other Tools are other widely-used tools with similar capabilities

Engineering Tools Enable Technology Advancement

OpenFAST – Primary Engineering Model

Used to develop 80% to the original full-scale floating wind prototypes

Recent/Ongoing Modeling Improvements

Substructure Flexibility and Member-Level Loads in OpenFAST

Novel Floater-Based Controls in OpenFAST

Curled Wake in FAST.Farm for Wake-Steering

Tight-Coupling in OpenFAST for Improved Computational Performance

Simplified Turbine Modeling in FAST.Farm for Improved Computational Efficiency

Simplified OpenFAST models with wakes and control

Full OpenFAST models with wakes, control, and structural loads

Mooring Design and Modeling is a Major Focus

MoorDyn For dynamics and loads analysis (in OpenFAST)

MoorPy For rapid design and optimization (in RAFT)

Future Areas for Offshore Wind Modeling

- Viscous hydrodynamics
- Steep and breaking waves
- Floater motion-induced aerodynamics
- Combined rotational augmentation and unsteady airfoil aerodynamics
- High Reynolds number
- Stall- and vortex-induced vibration
- Air-sea interaction
- Atmospheric stability
- Tropical cyclones
- Blockage / deep array effects
- Cluster wakes

Key Takeaways – Modeling Needs

- Economic models
 - Time dependency for cost reductions
 - Future costs of subcomponents
 - Tradeoffs between industrialization/standardization and turbine upscaling
 - Floating wind components
- Metocean
 - Better understanding of physics
 - Coupled wind/wave models
 - Extremes
- Multi-fidelity Performance and Loads Models
 - Accurate behavior of floating systems
 - Mooring deepwater, steep slopes, taut systems, TLP
- Code validation with field data is needed in all areas
- Grid modeling and capacity expansion tools are important.

Thank you for your attention!

Walt Musial Offshore Wind Research Platform Lead National Renewable Energy Laboratory walter.musial@nrel.gov

Photo Credit : Dennis Schroeder-NREL